Evolutionary implications of the form of predator generalization for aposematic signals and mimicry in prey.

نویسندگان

  • Graeme D Ruxton
  • Dan W Franks
  • Alexandra C V Balogh
  • Olof Leimar
چکیده

Generalization is at the heart of many aspects of behavioral ecology; for foragers it can be seen as an essential feature of learning about potential prey, because natural populations of prey are unlikely to be perfectly homogenous. Aposematic signals are considered to aid predators in learning to avoid a class of defended prey. Predators do this by generalizing between the appearance of prey they have previously sampled and the appearance of prey they subsequently encounter. Mimicry arises when such generalization occurs between individuals of different species. Our aim here is to explore whether the specific shape of the generalization curve can be expected to be important for theoretical predictions relating to the evolution of aposematism and mimicry. We do this by a reanalysis and development of the models provided in two recent papers. We argue that the shape of the generalization curve, in combination with the nature of genetic and phenotypic variation in prey traits, can have evolutionary significance under certain delineated circumstances. We also demonstrate that the process of gradual evolution of Müllerian mimicry proposed by Fisher is particularly efficient in populations with a rich supply of standing genetic variation in mimetic traits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Body size matters for aposematic prey during predator aversion learning

Aposematic prey advertise their toxicity to predators using conspicuous warning signals, which predators learn to use to reduce their intake of toxic prey. Like other types of prey, aposematic prey often differ in body size, both within and between species. Increasing body size can increase signal size, which make larger aposematic prey more detectable but also gives them a more effective and s...

متن کامل

The Evolution of Mimicry

Cryptic species have evolved camouflage, which enhances survival by decreasing their visibility and thus protecting them from would-be predators. Conversely, aposematic species have evolved vibrant colors which enhance visibility. These warning signals work by helping unpalatable, toxic, evasive, or stinging prey stand out from more favorable prey. Thus, predators learn to generalize the appear...

متن کامل

From Cues to Signals: Evolution of Interspecific Communication via Aposematism and Mimicry in a Predator-Prey System

Current theory suggests that many signaling systems evolved from preexisting cues. In aposematic systems, prey warning signals benefit both predator and prey. When the signal is highly beneficial, a third species often evolves to mimic the toxic species, exploiting the signaling system for its own protection. We investigated the evolutionary dynamics of predator cue utilization and prey signali...

متن کامل

Predators' Toxin Burdens Influence Their Strategic Decisions to Eat Toxic Prey

Toxic prey advertise their unprofitability to predators via conspicuous aposematic coloration [1]. It is widely accepted that avoidance learning by naive predators is fundamental in generating selection for aposematism [2, 3] and mimicry [4, 5] (where species share the same aposematic coloration), and consequently this cognitive process underpins current evolutionary theory [5, 6]. However, thi...

متن کامل

Investigating Müllerian mimicry: predator learning and variation in prey defences.

Inexperienced predators are assumed to select for similarity of warning signals in aposematic species (Müllerian mimicry) when learning to avoid them. Recent theoretical work predicts that if co-mimic species have unequal defences, predators attack them according to their average unpalatability and mimicry may not be beneficial for the better defended co-mimic. In this study, we tested in a lab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Evolution; international journal of organic evolution

دوره 62 11  شماره 

صفحات  -

تاریخ انتشار 2008